Effect of common anesthetics on dendritic properties in layer 5 neocortical pyramidal neurons.

نویسندگان

  • Sarah Potez
  • Matthew E Larkum
چکیده

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Journal of Neurophysiology Effect of Common Anesthetics on Dendritic Properties in Layer 5 Neocortical Pyramidal Neurons

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbita...

متن کامل

Properties of layer 6 pyramidal neuron apical dendrites.

Layer 6 (L6) pyramidal neurons are the only neocortical pyramidal cell type whose apical dendrite terminates in layer 4 rather than layer 1. Like layer 5 pyramidal neurons, they participate in a feedback loop with the thalamus and project to other cortical areas. Despite their unique location in the cortical microcircuit, synaptic integration in dendrites of L6 neurons has never been investigat...

متن کامل

Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.

Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of...

متن کامل

Effect of temperature on spiking patterns of neocortical layer 2/3 and layer 6 pyramidal neurons

The spiking patterns of neocortical pyramidal neurons are shaped by the conductances in their apical dendrites. We have previously shown that the spiking patterns of layer 5 pyramidal neurons change with temperature, probably because temperature modulates the electrical coupling between somatic and dendritic compartments. Here we determine whether temperature has similar effects on the spiking ...

متن کامل

Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons.

The dendritic tree of layer 5 (L5) pyramidal neurons spans the neocortical layers, allowing the integration of intra- and extracortical synaptic inputs. Here we investigate the postnatal development of the integrative properties of rat L5 pyramidal neurons using simultaneous whole cell recording from the soma and distal apical dendrite. In young (P9-10) neurons, apical dendritic excitatory syna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2008